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Transition probabilities for the three-level Landau-Zener 
model 

C E Carroll and F T Hioe 
Department of Physics, St John Fisher College, Rochester, New York 14618, USA 

Received 28 October 1985 

Abstract. A three-level model is used for an atom in which two transitions are driven by 
two laser beams, having constant amplitudes and detunings that are proportional to the 
time. Assuming that any two of the levels are unoccupied at large negative times, we obtain 
simple formulae for the occupation probabilities at large positive times. Our previous 
results and the early calculation of Landau and Zener are special cases of these general 
formulae. 

1. Introduction 

The Landau-Zener model is widely used in studying the dynamics of two-level quantum 
systems. The probability of a transition between the two levels was found by Landau 
(1932) and Zener (1932). They applied their model to transitions in diatomic molecules. 
More recently, this model has been applied to many physical topics, such as nuclear 
collisions (Abe and Park 1983) and impurities in semiconductors (Henry and Lang 
1977). We seek to apply this model and its three-level generalisation to atomic or 
molecular systems driven by laser beams. This paper reports transition probabilities, 
and probabilities of no transition, calculated for the three-level driven-atom generalisa- 
tion of the Landau-Zener model. 

In the two-state model of an atom (or molecule), we assume that the transition is 
driven by a laser beam of constant amplitude, and that the detuning of the driving 
frequency is proportional to t ,  the time. If the atom is in a definite state at large 
negative time, and if the rotating-wave approximation is used, the calculation of Landau 
and Zener gives the probability that the atom is in the same state at large positive 
time. This two-state model will be called a two-level model, because we assume that 
each energy level corresponds to only one state. 

In the three-level model, two transitions are driven by laser beams of constant 
amplitude, possibly derived from the same laser. We assume that the detunings of the 
two laser beams are both proportional to t.  The transition probabilities and prob- 
abilities of no transition are found by generalising the Landau-Zener calculation. A 
complete set of calculated transition probabilities for this model is given in this paper. 
These probabilities are given by rather simple formulae, similar to the formula of 
Landau and Zener. 

The assumption that the frequencies of the two laser beams pass through resonance 
at t = 0 might be replaced by an assumption that they pass through resonance at very 
different times. This allows calculation of transition probabilities by solving a sequence 
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of two two-level problems. Such calculations are not considered in this paper; see 
Atabek et a1 (1984). 

If the effect of one of the laser beams is negligible, our three-level model reduces 
to a two-level model, and the calculations of Landau and Zener are directly applicable. 
Their formula has been verified by an experiment with Rydberg states of lithium 
(Rubbmark et a1 1981), and we hope that our three-level formulae can be verified by 
experiment. 

Our model of a three-level atom driven by two laser beams is described in 0 2, 
where we specify the assumptions used and write the Schrodinger equation. Section 
3 describes the method of finding exact analytic solutions of the Schrodinger equation. 
The resulting final occupation probabilities are given in $ 4 ,  and the calculations are 
outlined in four appendices. 

2. Driven atom and rotating-wave approximation 

The three-level model of an atom driven by two laser beams is fully described in this 
section. We use the rotating-wave approximation, which permits elimination of optical 
frequency terms from the Hamiltonian and wavefunction. After this elimination, the 
Hamiltonian for this model is a linear function of t ,  the time, as is the Hamiltonian 
of the original Landau-Zener model. 

Consider an experiment in which two laser beams drive two transitions in an atom. 
The driven transitions connect level 1 to level 2 and level 2 to level 3. We shall use a 
classical description of the two laser beams; the oscillating electric fields of the two 
beams appear as external fields in the Schrodinger equation for the atom. This means 
that we can write the Hamiltonian for the atom as a 3 x 3 matrix, with matrix elements 
HI1, Hzz , .  . . , H33. We assume that each laser beam drives only its own transition, and 
only when its frequency is near resonance. When its frequency is far from resonance, 
it has a negligible effect on the atom. Neglect of this effect will allow a simplification 
of our calculations. 

In the 3 x 3 Hamiltonian matrix, as first written, the diagonal elements HI1, Hz2,  
H3,  are the atomic energy levels. The off-diagonal elements are proportional to the 
classical external fields that drive the transitions. The 1-3 transition is not driven by 
an applied oscillating field. Indeed, the electric dipole selection rules say that it cannot 
be driven. Hence 

This is a significant simplification of the Hamiltonian matrix. The remaining off- 
diagonal elements oscillate at optical frequencies. Each of them contains terms in 
exp(*iwLt), where oL is the frequency of the corresponding laser beam. One of these 
exponential terms represents a driving frequency that has the wrong sign, and it has 
little effect in driving the transition (Allen and Eberly 1975). We drop this ineffective 
term; this is the rotating-wave approximation. The errors involved in this approxima- 
tion have been studied in detail (Bloch and Siegert 1940, Stevenson 1940, Shirley 1965), 
using the two-level model. If both transitions are driven by circularly polarised laser 
beams propagating along an external magnetic field, only one exponential function 
appears in each matrix element that is next to the main diagonal of the Hamiltonian 
matrix, and the rotating-wave approximation is not invoked. However, in this case, 
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we use a similar approximation, for we assume that each oscillating electric field is so 
weak that it drives only its own transition. 

The rotating-wave approximation is associated with a simple time-dependent unitary 
transformation that removes optical frequency terms from the Hamiltonian and 
wavefunction. See Einwohner et a1 (1976) for the N-level formulation of this transfor- 
mation. Due to ( l ) ,  their transformation is applicable to our case. We assume that 
the amplitude of each optical frequency applied field is constant; these constants 
appear in off -diagonal elements of the Hamiltonian matrix. The time-dependent unitary 
transformation removes the factors of exp( f i q t ) ,  and gives us a Hamiltonian matrix 
in which off-diagonal elements are constant. The unitary matrix used in this transforma- 
tion is diagonal. This means that it does not change the numbering of the three levels, 
nor the condition ( 1 ) .  

The diagonal elements of the Hamiltonian matrix are changed by this time-depen- 
dent unitary transformation. It replaces each atomic energy level on the diagonal by 
the detuning of one of the laser frequencies or by a linear combination of the two 
detunings. These diagonal matrix elements should include a factor of Planck's constant, 
but we set h = 1 and measure frequencies in radians per unit time. Since we assume 
detunings proportional to t ,  the Schrodinger equation for the atom has the form 

Here, a , ,  a2,  a3 are the amplitudes for the three atomic states or atomic levels. The 
Rabi frequencies are !XIl2 and a23; each of them is twice the product of a transition 
dipole moment and the corresponding optical frequency field amplitude. The corre- 
sponding detunings are 

2( r1- r 2 )  t and 2( r2 - r3)  t. ( 3 )  

We assume that the amplitude of each optical frequency field is entirely independent 
of t ,  so that R I ,  and CL23 are constants. Although it is necessary to turn the laser beams 
on at an early time and turn them off at a late time, we omit this time dependence 
from the mathematical model, because the laser beams have negligible effects when 
their detunings are large. This physical argument is supported by the analytic solutions 

The limiting cases of this model must be mentioned. If either of the Rabi frequencies, 
a,, and f123, is set equal to zero, we have a simple case to which the calculations of 
Landau and Zener are applicable. If both Rabi frequencies are non-zero and the three 
coefficients r, ,  r2, r3 do not have distinct values, we have a resonant case in which one 
of the detunings ( 3 )  vanishes or the sum of the two detunings vanishes. In the resonant 
cases, we may not claim that the effects of the two laser beams become negligible as 
t + fa. In each resonant case, the occupation probabilities of two or three atomic 
states can oscillate indefinitely as t + fa. Rather than abandon our assumption of 
strictly constant Rabi frequencies, we shall calculate those few transition probabilities, 
and probabilities of no transition, that exist in resonant cases. 

The experiment proposed in this section is based on detunings proportional to t. 
Such detunings might be produced by varying the laser frequencies, but it seems 
simpler to use the Stark or Zeeman shifts to vary the differences of atomic energy 
levels. Furthermore, it may be possible to derive the two laser beams from one laser. 

of ( 2 ) .  
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The ground state of the atom could be any of the three atomic states in our model. 
One may assume that the atom is initially in its ground state, but this does not affect 
our calculations. 

3. Solution of Schrodinger equation 

To calculate occupation probabilities for the three levels at large positive times, we 
shall use integral representations of the solutions of ( 2 ) .  This section points out the 
significant parameters in ( 2 ) ,  shows that the resonant cases appear as boundaries 
between six non-resonant cases and indicates what integral representations are appli- 
cable in the resonant and non-resonant cases. 

The transformation leading to (2) can be arranged so that r , ,  r2 or r3 vanishes, or 
so that rl + r2+ r3 has any desired value. Alternatively, a simple transformation that 
increases the Hamiltonian by t times the unit matrix can be constructed separately. 
Such a transformation multiplies the wavefunction by an overall factor of exp(iCt2), 
where C is any real constant, without changing any occupation probability or expecta- 
tion value. This means that the differences (3) are the physical quantities represented 
on the main diagonal of the Hamiltonian matrix. We have a resonant case if r,  - r2 
or r2 - r3 or rl - r3 vanishes. In the non-resonant cases, each of these differences is 
positive or negative, and six combinations of signs are possible. Only one of these six 
combinations was treated in our earlier paper (Carroll and Hioe 1985). Of course, the 
Landau-Zener calculation is applicable to a limiting case of our model. 

The obvious first step toward solving ( 2 )  is to write it in terms of dimensionless 
variables. However, the amplitudes a,, a, and a3 are already dimensionless and the 
introduction of a dimensionless time does not seem worthwhile. The transition prob- 
abilities must depend on dimensionless parameters derived from ( 2 ) ,  and the integral 
representations used in the six non-resonant cases prompt us to define two dimension- 
less parameters 

Here, we assume that fl,, and 023 are real, so that p and q are real; the relative phases 
of a,, u2, a3 can always be chosen so that R12 and Cl23 are real. A third dimensionless 
parameter is ( r ,  - r 2 ) / ( r 2 -  r3), the ratio of the two detunings, (3). This parameter is 
of lesser importance, and we do not assign a special symbol to it. The remaining 
dimensionless parameters in ( 2 )  are unphysical parameters that cannot appear in cal- 
culated transition probabilities. For example, rl / ( f l12)2 is a dimensionless parameter; 
it can be given an arbitrary value (unless flI2 = 0) by using the simple transformation 
mentioned in the previous paragraph. The transition probabilities can depend only 
on the three dimensionless parameters we have mentioned. But in resonant cases, one 
of the denominators in (4) can vanish. This causes no difficulty; we shall not use any 
definition that involves a division by zero. 

In the exact analytic solutions of (2), each component of the wavefunction is 
proportional to an integral along a certain path in the complex plane. Although each 
integral representation can be verified by substitution into ( 2 ) ,  the methods used to 
find these integral representations are outlined in appendix 1. We assume that neither 
fll, nor a,, is zero, because the Landau-Zener calculation is applicable if either is 
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zero. If the three coefficients r , ,  r2 and r3 have distinct values, there are six possible 
orderings of the three values along the real axis, and these are the six non-resonant 
cases mentioned above. They are treated briefly in appendix 2 ,  which explains that 
we do two separate calculations rather than six. In the resonant cases, the values of 
r , ,  r,, and r, are not distinct. If rl = r2 = r3, all three occupation probabilities oscillate 
as t + =too, and no limits can be calculated. If rl = r2 # r3, then the occupation prob- 
abilities of levels 1 and 2 can oscillate with frequency as t + 503. This case and 
the case of rl  # r, = r3, which is similar, are treated in appendix 3. If rl = r3 # r2, then 
the occupation probabilities of levels 1 and 3 can oscillate as t +  fa, although the 
oscillations become slower and slower as I t /  increases. This case is treated in appendix 
4. We find that if rj = r, and j # k then we must assume that levels j and k are both 
unoccupied at large negative times. 

Using the integral representations shown in appendices 2, 3 and 4, we can write 
the general solution of (2) in any particular case. We impose the initial condition that 
one of the three levels is occupied with unit probability in the limit as t + -00, and we 
use each level in turn as the initial level, provided the behaviour of the general solution 
as t + --CO allows this. These initial conditions lead to the following results. 

4. Resulting final occupation probabilities 

The transition probability calculated by Landau and Zener is given by a simple formula, 
involving the exponential function and the single dimensionless parameter of their 
model. The transition probabilities for our three-level model are similarly simple. 
They involve exponential functions but no square roots or higher transcendental 
functions. Furthermore, they involve only p and q, the dimensionless parameters 
defined by (4). If p and q are constant, the transition probabilities do not depend on 
( rl - r 2 ) / (  r2 - r 3 ) ,  the third dimensionless parameter. This is the other simple feature 
of the transition probabilities given by our model. 

The initial condition for solution of (2) involves limits as 1 + -a, and the transition 
probabilities are limits of occupation probabilities as t + Sa.  Because of these limits, 
the transition probabilities can be discontinuous functions of r l  - r2 and r2 - r3,  the 
two coefficients appearing in (3). Discontinuities appear in figure 1, where we plot 
the two calculated transition probabilities as functions of r3. The discontinuities appear 
at r3 = r l ,  where the sum of the two detunings is zero at all times, and at r3 = r2, where 
one of the detunings is zero at all times. The transition probabilities plotted in figure 
1 are not defined at these points; only a few final occupation probabilities can be 
calculated in the resonant cases. 

We postpone listing the results for resonant cases, and assume that the coefficients 
r l ,  r2 and r3 have distinct values. Then the three final occupation probabilities are 
simply quadratic polynomials in 

P = exp( -2xIpl) and 0 = exp(-2x/qI). ( 5 )  

The three-level atom can be in any of its three levels at large negative times, and there 
are six possibilities for the signs of the two detunings (3) and their sum. This means 
that there are many cases to be covered. Table 1 is a concise collection of the results 
for all these cases. 
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I 
-Zr, -r1 4 2 ‘1 

r3 - 
Figure 1. Transition probabilities calculated for an atom that is in state 1, with unit 
probability, at large negative times. The transition probabilities are the occupation prob- 
abilities of states 2 and 3 at large positive times. Full curve: probability of transition from 
1 to 2; broken curve: probability cjf transition from 1 to 3. We assume = (f123)2 = 
r l  - r2 > 0, and plot the transition probabilities as functions of r3. We assume r2 = 0, which 
simplifies the labels on the abscissa, without causing any further loss of generality. 

Table 1. Final occupation probabilities for the non-resonant cases. The initial condition 
is that one of the three levels is certainly occupied in the limit as t + --CO. The three possible 
initial levels correspond to the three columns. The final occupation probabilities for the 
nth level appear as the nth row in the appropriate matrix. Hence, the probabilities of no 
transition appear as diagonal matrix elements. P and Q are defined by ( 5 )  and the matrices 
are symmetric. 

Initial occupation Initial occupation Initial occupation 
probabilities probabilities probabilities 
1,0,0 0,1,0 o,o, 1 
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Table 2. Probability of no transition in the cases of rl = r2 # r3 and r ,  # r2 = r3. Either p or 
9 is defined; see (4). The initial occupation probabilities must be as in the middle column 
in order to have definite limits as t + -m. Although two occupation probabilities oscillate 
indefinitely as t -* +a, the probability of no transition can be calculated. 

Initial occupation 
Resonant probabilities for Probabilility of 
case levels 1, 2 and 3 no transition 

Table 3. Final occupation probabilities for the resonant case in which the sum of the two 
detunings is always zero. Here, rl = r3 f r2.  Both p and 9 are defined; see (4). 

Initial 
occupation 

Level probability Final occupation probability 

1 0 

3 0 

If R23 = 0, then Q = 1 and the results shown in table 1 simplify somewhat; they 
agree with the result of Landau and Zener. The case of RI, = 0, which gives P = 1, is 
similar. 

In the resonant cases, we assume that RI2  and R23 are non-zero. If r ,  = r2 = r,, no 
occupation probability approaches a limit as t + --CO or +-CO. If rl  = r2 # r3,  then the 
occupation probabilities of levels 1 and 2 oscillate when It1 is large, unless they both 
vanish. We assume that only level 3 is occupied at large negative times and calculate 
the probability of no transition, which is Q2. This result and a similar result for the 
case of rl  Z r, = r3 are displayed in table 2.  We notice that the calculated probabilities 
are again quadratic polynomials in P or Q, whichever is defined. In the remaining 
resonant case, rl = r3 # r2.  Again, the occupation probabilities can oscillate indefinitely 
as t +  -CO. We must assume that the atom is initially in level 2. The final occupation 
probabilities are shown in table 3. Since (R12)2/(R23)2 = - p / q  holds in this case, the 
final occupation probabilities could be written as functions of p and q only. 

5. Conclusion 

We have studied a three-level model for an atom in which two transitions are driven 
by laser beams of constant amplitude. A generalisation of the Landau-Zener model 
was obtained by assuming that both detunings are proportional to t. The transition 



2068 C E Carroll and F T Hioe 

probabilities, and probabilities of no transition, have been calculated in every case 
where these limits exist. 
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Appendix 1. Integral representations 

We can find exact analytic solutions of ( 2 )  by making each component of the wavefunc- 
tion proportional to an integral along a certain path in the complex plane. The 
integrands can be found by a Laplacian method, described in some textbooks. They 
can also be found by the method of Demkov (1966), unless the coefficients rl, r2 and 
r, have distinct values. Since this paper is mainly concerned with the case of three 
distinct values, we do not describe the application of Demkov's method. After construc- 
tion of the integral representations, further calculations lead to tables 1 ,2  and 3. These 
calculations are described in separate appendices. 

d3a,/dt3 + 2i( rl + r2+ r , ) t  d2a,/dt2+{-4( r1r2+ r2r3 + r 3 r , ) t 2  

Using (2) and eliminating a, and a3, we find the differential equation for a, 

+2i(2r, + r 2 ) + $ [ ( C l , 2 ) 2 +  (C123)2]} da, /dt  

+ { -8i r ,  r2 r3 t' - 4r, ( 2r2 + r3)  t 

+ 4 i [ ( ~ ] ~ ) ~ r , +  (S /23 )2r , ] t }a ,  = 0. (Al.l)  

The coefficients that appear here are odd and even polynomials in t ,  alternately. This 
circumstance, and the concise treatment of the two-level case by Wannier (1969, lead 
us to use 

(A1.2) 2 X = t  

as a new independent variable. This gives 

x d3a,/dx3 + [i( rl + r2+ r3)x +3] d2a,/dx2+{-( r1r2+  r2r3+ r 3 r , ) x  

+4i(3r, + 2 r 2 +  r3)+&[(al2I2+ (a2J21} da,/dx 

+{ -ir,r2r3x-4rl(2r2+ r 3 ) + & i [ ( ~ 1 2 ) 2 r 3 + ( ~ 2 3 ) 2 r 1 ] } a ,  = O  

in which the polynomials are linear in x. A known method, attributed to Laplace, will 
give integral representations of two or more solutions; see Burkill (1962) or Morse 
and Feshbach (1953). Forsyth (1888) describes this method, and cites several authors 
other than Laplace. 

To solve the equation 

( c , x + ~ , ) ~ ' " ' ( x ) +  . . . + ( c l x + d , ) y ' ( x ) + ( c 0 x + d , ) y ( x )  = O  (A1.3) 

welet C(z)=c,z"+ . . .  +c lz+coand  D ( z ) = d , z " +  . . .  +dlz+do.  
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If we assume that a l , .  . . , a ,  the zeros of C(z),  are all distinct, so that D(z) /C(z)  
can be written in the form 

then a solution of (A1.3) can be written as 

where the contour C is chosen so that 

e x p [ ( x + k , ) ~ ] ( z - a , ) ~ l . ,  . ( z - c c " ) ~ ~  

vanishes at both ends. 
In our case the integral representation is 

assuming that rl, r2 and r3 have three distinct values. The parameters p and q are 
defined by (4). A similar calculation gives a similar integral representation for a3. The 
integrands used for a, and a3 have three branch points, at -ir,, -ir2 and -ir3. In 
appendix 2, we shall use a path of integration that encloses one, and only one, of 
these branch points. 

For the two-level model, or Landau-Zener model, Wannier (1965) writes one 
component of the two-component wavefunction as t -1 /2 times the Whittaker function. 
Whittaker (1903) defined this function by an integral similar to (A1.4), but with only 
two branch points. The path of integration in this definition encloses one branch point 
but not the other. We have solved the three-level problem simply by using a third 
branch point. 

If the values of r l ,  r2 and r3 are not distinct, the calculations are simpler. Use of 
(A1.2) is not desirable. We can use the simple transformation mentioned early in 0 3 
to make at least two of the coefficients r , ,  r2 and r3 vanish. Then (Al .1)  has the form 
of (A1.3). The resulting integral representations are used in appendices 3 and 4. If 
rl = r2 = r3, we can make all the diagonal elements of the matrix in (2) vanish, so that 
solutions of (2) are easily found. 

Appendix 2. Non-resonant cases 

Here, we assume that the values of r,, r2 and r3 are distinct. This is to say that the 
two coefficients in (3) are non-zero, and the sum of the two detunings vanishes only 
at t = 0. In integrands such as that in (A1.4), the three branch points are distinct. We 
draw a branch line to the left from each branch point; it is on or parallel to the negative 
real z axis. The path of integration has ends far to the left in the z plane, where 
lexp(zt2)I is negligible. It does not cross any branch line. It encloses one and only 
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one branch point and it goes around the branch point in the usual counterclockwise 
direction. The same path of integration is used in each component of the vector 

(z  + irl)-l+iP(z +ir2)-1'2-iP+iq (z+ir,)-'¶ 

i (z+ir,)1p(z+ir,)-' /2-1p+1q (z + ir3)-'-lq exp( zt2) dz 

The subscript j ,  which is 1, 2 or 3, serves to distinguish the three paths of integration; 
the path used for V, encloses -irj and no other branch point. The normalisation 
constant Nj will be determined shortly. Using partial integration, one verifies that 
(A2.1) is a solution of (2). This verification does not go through if t = O  and one of 
the integrals in (A2.1) diverges if t = 0. Consideration of this difficulty is postponed. 

We assume that t is real. Wannier (1965) uses large complex values of t to find 
the transition probability for the two-level case, but such a calculation seems entirely 
impractical for the three-level case. We also assume that n12 and a 2 3  are positive. 
The relative phases of aI,  a2 and a3 can be adjusted so that nI2 and flZ3 are positive, 
except in the simple case where one of them vanishes. 

The three solutions of ( 2 )  that we call VI, V2 and V, have simple behaviours as 
t +  *W. In the z plane, the neighbourhood of -irj determines the behaviour of V, 
when It1 is large, and one component of the vector is dominant. This leads to a simple 
computation of the normalisation constants NJ. For example, if r2> rl > r3 

and t + *a gives 
exp{-irlt2 - i(p - q )  ln[(r, - rl) t2] - iq ln[(rl - r3)t2] + i  arg[r(ip)] +t in} 

V1-[ 0 0 

Terms in l / t  and powers of l / t  are not shown here. It is clear that VI is correctly 
normalised when It1 is sufficiently large. Since it satisfies ( 2 ) ,  the Schrodinger equation, 
when t # 0, it is correctly normalised when t # 0. The asymptotic form of V2 at large 
I t (  is similar, except that the second component is dominant. In V3, the third component 
is dominant when It\ is large. This means that V,, V, and V3 are normalised and 
orthogonal when )ti is sufficiently large. The Schrodinger equation ( 2 )  is used to show 
that they are normalised and orthogonal when t # 0. 

We now have a complete set of orthonormal vectors V,, although the normalisation 
constants N, have to be computed in each of the six cases. The vectors V,, V, and V, 
satisfy (2) when t # 0, which makes them quite useful as basis vectors for describing 
solutions of ( 2 ) .  Since the middle component of (A2.1) is discontinuous at t = 0, these 
basis vectors are not themselves the desired solutions of ( 2 ) .  The general solution of 
( 2 )  can be written as AlV,+A2V,+A3V3,  where the coefficients A I ,  A,, A3 are 
time dependent only because of the difficulty at t = 0. We write the general solution 
more explicitly as A,(  * ) VI + A,( 5 ) V2+ A,( * ) V3, where the ambiguous sign is the 
sign of t. The general solution is continuous at t = 0, of course. Continuity of the 
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three components of the wavefunction gives three linear equations to determine A,( + ), 
A2( +)  and A3( +)  in terms of AI( -), A,( - )  and A,( - ), or vice versa. Solving these 
equations will give the unitary matrix that relates the basis vectors for r > 0 to the basis 
vectors for t < 0. This unitary matrix is just the S matrix, because the initial condition, 
applied at large negative r, implies that two of the coefficients AI( - ), A,( - )  and 
A3( - ) are zero. Each final occupation probability is the absolute square of an Aj( + ) 
or of an element of the S matrix. 

The linear equations to determine the S matrix can be written out after we calculate 
the limits of V, as t -Y 0, from above and from below. These limits involve beta functions 
times hypergeometric functions. Hypergeometric functions of two different arguments 
appear, but the two arguments are positive and their sum is unity. A standard formula 
can be used to write the equations for the S matrix in terms of hypergeometric functions 
of the same argument. Because of differences in the three parameters of the hyper- 
geometric function, we have four different hypergeometric functions at this stage. The 
Wronskian of an ordinary linear second-order differential equation is used to find a 
useful relation among these four hypergeometric functions. Then the hypergeometric 
functions, the beta functions and the complex numbers can be eliminated from the 
linear equations for the S matrix, which turns out to be real and symmetric. The square 
roots drop out when final occupation probabilities are calculated, and we find the 
simple results shown in table 1. 

A more detailed account of this lengthy calculation was given by Carroll and Hioe 
(1985), but only for the case of r , >  r2> r3.  The case of r ,  < r 2 <  r3 can be obtained by 
interchanging the labels 1 and 3 or by using the time-reversal transformation to change 
the signs of r , ,  r2 and r3. In (2), one may replace a , ,  a ,  and U ,  by their complex 
conjugates and also change the signs of i, r, r,, r2 and r,;  this leaves (2) unchanged. 
This transformation and the simple interchange of 1 and 3 can be used to avoid treating 
all six of the non-resonant cases. Only two of them have to be treated explicitly, 
starting with calculation of NI, N2 and N,. If the two detunings in (3) have the same 
sign, we can use the calculation in our earlier paper. To treat the case of opposite 
signs in (31, the whole lengthy calculation has to be repeated. 

Appendix 3. One detuning is zero 

If rl = r2 # r3, we assume r ,  = r2 = 0, to find a solution of ( A l . l ) ,  and then remove this 
assumption. The exact solution of (2) has the form 

where q is given by (4) and the same path of integraition is used in all three integrals. 
Three independent solutions can be obtained by altering the branch lines and the path 
of integration. The branch lines that we shall use are rays that run downward from 
z = kfn,,, parallel to the negative imaginary axis. The path of integration will run off 
to CO in two opposite quadrants of the complex plane. If rl > r3,  the normalisation 
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factor of [ n( r ,  - r3) ] -”2  that appears here is correct; if rl < r3, a normalisation factor 
of [ n( r3 - rl)]-1’2 exp(2~rq) should be used instead. An overall phase factor in this 
solution depends on what units of frequency are used; the reader may prefer a solution 
in dimensionless form. 

If t is large and negative, the path of integration for this solution can be deformed 
to run through the saddle point at z -- -2( r ,  - r,)t and stay away from the branch lines. 
In the limit as t - ,  -00, this solution gives zero occupation probabilities for levels 1 
and 2. As t + +00, the occupation probabilities of levels 1 and 2 oscillate indefinitely, 
and the occupation probability of level 3 approaches the limit shown in table 2. If 
r ,  # r2 = r3, we may exchange the labels 1 and 3 rather than repeating this calculation. 

Appendix 4. Sum of detunings is zero 

In the remaining case, r ,  = r3 # r,. Some exact solutions of (2) have the form 

iz2 
4( rl - r2) 

a ,  = ‘12 I z-l+2i(p-q) 

4[ T( rI - r2)]1’2 

iz2 
4( rl - r2) 

a3 = ‘23 J z-1+2i(p-q) 

4[ n-( r ,  - r 2 ) ] ’ l 2  

where the same path of integration is used in all three integrals. This integral representa- 
tion gives two independent solutions of (2). The third solution has a2=0,  while a, 
and a3 are constant multiples of exp( -ir, r2) .  To obtain definite occupation probabilities 
in the limit as t - ,  -00, we ignore the third solution and use the negative imaginary 
axis as the branch line. The path of integration runs off to 0O in two opposite quadrants. 
If r ,  > r,, the normalisation factor written in front of these integrals is correct; if rl < r,, 
it must be changed. If t is large and negative, the path of integration can go through 
the saddle point at z -- -2( rl - r2 ) t  and stay away from the branch point at z = 0. This 
gives the initial occupation probabilities shown in table 3. Further calculation gives 
the final occupation probabilities shown in table 3. 
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